Quantale algebras as a generalization of lattice-valued frames

نویسندگان

  • Sergey A. Solovyov
  • C. L. Chang
چکیده

Recently, I. Stubbe constructed an isomorphism between the categories of right Q-modules and cocomplete skeletal Q-categories for a given unital quantale Q. Employing his results, we obtain an isomorphism between the categories of Q-algebras and Q-quantales, where Q is additionally assumed to be commutative. As a consequence, we provide a common framework for two concepts of lattice-valued frame, which are currently available in the literature. Moreover, we obtain a convenient setting for lattice-valued extensions of the famous equivalence between the categories of sober topological spaces and spatial locales, as well as for answering the question on its relationships to the notion of stratification of lattice-valued topological spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUANTALE-VALUED SUP-ALGEBRAS

Based on the notion of $Q$-sup-lattices (a fuzzy counterpart of complete join-semilattices valuated in a commutative quantale), we present the concept of $Q$-sup-algebras -- $Q$-sup-lattices endowed with a collection of finitary operations compatible with the fuzzy joins. Similarly to the crisp case investigated in cite{zhang-laan}, we characterize their subalgebras and quotients, and following...

متن کامل

Weak hyper semi-quantales and weak hypervalued topological spaces

The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...

متن کامل

A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES

We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...

متن کامل

A generalization of the Chen-Wu duality into quantale-valued setting

With the unit interval [0,1] as the truth value table, Chen and Wupresented the concept of  possibility computation over dcpos.Indeed, every possibility computation can be considered as a[0,1]-valued Scott open set on a dcpo. The aim of this paper is tostudy Chen-Wu's duality on quantale-valued setting. For clarity,with a commutative unital quantale $L$ as the truth value table, weintroduce a c...

متن کامل

On coproducts of quantale algebras

While the study of quantale-like structures goes back up to the 1930’s (notwithstanding that the term itself was introduced in [2] in connection with certain aspects of C∗-algebras), there has recently been much interest in quantales in a variety of contexts. The most important connection probably is with Girard’s linear logic. In particular, one can enunciate the following slogan: Quantales ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015